Synopsis of Original Research Paper

DNA damege and its repair in human cells exposed to solar light

Osamu Nikaido

Division of Radiation Biology, Faculty of Pharmaceutical Sciences, Kanazawa University

We analyzed the induction and repair of various kinds of DNA damage in human cells exposed to a solar UV-simulator, by means of an enzyme-linked immunosorbent assay or an immunoslot blot conjugated with enhanced chemiluminescence (ISB-ECL) system. When we irradiated normal human cells with up to 10 J/m² of UVC (germicidal lamps, predominantly 254nm), we could detect the induction of both cyclobutane thymine dimers (TT-dimers) and (6-4) photoproducts (64Ps) in their cellular DNA in dose-dependent manners. Normal human cells completely excised 64ps by 8hr after the exposure, whereas the cells excised only 50% of initial amount of TT-dimers by 24hr. On the other hand, the xeroderma pigmentosum cells beloging to complementation group A (XPA) could not excise both TT-dimers and 64ps.

We succeeded to detect the induction of the Dewar isomers of (6-4) photoproducts in human cells exposed to a solar UV-simulator (Oriel) by using a monoclonal antibody DEM -1 specific for Dewer photoproducts (Dewer-P) in DNA. Normal human cells excised Dewer-P from their DNA faster than TT-dimers, but slower than (6-4) photoproducts. However XPA cells defective in DNA repair could not excise any kinds of DNA damage at all.